LTU

ASSALAMUALAIKUM DAN SALAM SEJAHTERA SEMUA PEMBACA BLOG LTU...MUSIM QURBAN BERMULA..SILA SINGGAH KE LADANG TERNAKAN ULU YAM UNTUK MELIHAT SENDIRI TERNAKAN KAMI ATAU HUBUNGI 0192195589 Puan Zaitun OR En Sidek 012-3770445

56 Year Old Broke Dude Swims in P--sy...

   















 
analyzed crystallographically, such as proteins, do not occur naturally as crystals. Typically, such molecules are placed in solution and allowed to slowly crystallize through vapor diffusion. A drop of solution containing the molecule, buffer, and precipitants is sealed in a container with a reservoir containing a hygroscopic solution. Water in the drop diffuses to the reservoir, slowly increasing the concentration and allowing a crystal to form. If the concentration were to rise more quickly, the molecule would simply precipitate out of solution, resulting in disorderly granules rather than an orderly and hence usable crystal. Once a crystal is obtained, data can be collected using a beam of radiation. Although many universities that engage in crystallographic research have their own X-ray producing equipment, synchrotrons are often used as X-ray sources, because of the purer and more complete patterns such sources can generate. Synchrotron sources also have a much higher intensity of X-ray beams, so data collection takes a fraction of the time normally necessary at weaker sources. Complementary neutron crystallography techniques are used to identify the positions of hydrogen atoms, since X-rays only interact very weakly with light elements such as hydrogen. Producing an image from a diffraction pattern requires sophisticated mathematics and often an iterative process of modelling and refinement. In this process, the mathematically predicted diffraction patterns of an hypothesized or "model" structure are compared to the actual pattern generated by the crystalline sample. Ideally, researchers make several initial guesses, which through refinement all converge on the same answer. Models are refined until their predicted patterns match to as great a degree as can be achieved without radical revision of the model. This is a painstaking process, made much easier today by computers. The mathematical methods for the analysis of diffraction data only apply to patterns, which in turn result only when waves diffract from orderly arrays. Hence crystallography applies for the most part only to crystals, or to molecules which can be coaxed to crystallize for the sake of measurement. In spite of this, a certain amount of molecular information can be deduced from patterns that are generated by fibers and powders, which while not as perfect as a solid crystal, may exhibit a degree of order. This level of order can be sufficient to deduce the structure of simple molecules, or to determine the coarse features of more complicated molecules. For example, the double-helical structure of DNA was deduced from an X-ray diffraction pattern that had been generated by a fibrous sample. In materials science Crystallography is used by materials scientists to characterize different materials. In single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically, because the natural shapes of crystals reflect the atomic structure. In addition, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects. Mostly, materials do not occur as a single crystal

0 comments:

About This Blog

Blog Ladang Ulu Yam dibina sejak 2007
Sila hubungi uluyamfarm@gmail.com
019 2195589 or 012-3770445

Lorem Ipsum

  © Blogger templates Shiny by Ourblogtemplates.com 2008

Back to TOP